Home | Search | Help  
Home Page Università di Genova

Technical Report Details


Date 26-11-2003
Number DISI-TR-03-12
Title Building kernels from binary strings for image matching
Authors Francesca Odone, Annalisa Barla, Alessandro Verri
Bibtex Entry
E-mail odone@disi.unige.it
Link ftp://ftp.disi.unige.it/person/OdoneF/TR-DISI-2003-12.ps
Abstract In the statistical learning framework the use of appropriate kernels may be the key for substantial improvement in solving a given problem. In essence, a kernel is a similarity measure between input points satisfying some mathematical requirements and possibly capturing the domain knowledge. In this paper we focus on kernels for images: we represent the image information content with binary strings and discuss various bitwise manipulations obtained using logical operators and convolution with non-binary stencils. In the theoretical contribution of our work we show that histogram intersection is a Mercer's kernel and we determine the modifications under which a similarity measure based on the notion of Hausdorff distance is also a Mercer's kernel. In both cases we determine explicitly the mapping from input to feature space. The presented experimental results support the relevance of our analysis for developing effective trainable systems.
Back to Technical Reports